Variational grand-canonical electronic structure method for open systems.
نویسندگان
چکیده
An ab initio method is developed for variational grand-canonical molecular electronic structure of open systems based on the Gibbs-Peierls-Boguliobov inequality. We describe the theory and a practical method for performing the calculations within standard quantum chemistry codes using Gaussian basis sets. The computational effort scales similarly to the ground-state Hartree-Fock method. The quality of the approximation is studied on a hydrogen molecule by comparing to the exact Gibbs free energy, computed using full configuration-interaction calculations. We find the approximation quite accurate, with errors similar to those of the Hartree-Fock method for ground-state (zero-temperature) calculations. A further demonstration is given of the temperature effects on the bending potential curve for water. Some future directions and applications of the method are discussed. Several appendices give the mathematical and algorithmic details of the method.
منابع مشابه
Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canon...
متن کاملThe Equivalence of Ensembles for Classical Systems of Particles
For systems of particles in classical phase space with standard Hamiltonian, we consider (spatially averaged) microcanonical Gibbs distributions in finite boxes. We show that infinite-volume limits along suitable subsequences exist and are grand canonical Gibbs measures. On the way, we establish a variational formula for the thermodynamic entropy density, as well as a variational characterizati...
متن کاملA variational principle for the equilibrium of hard sphere systems
We show that the equilibrium state of an infinite system of interacting hard spheres can be obtained in the grand canonical formalism by means of a variational principle. We give also a simple application deriving the Salsburg-Zwanzig-Kirkwood expressions for correlation. functions of the equilibrium state of one dimensional systems of hard spheres. §
متن کاملAN OBSERVER-BASED INTELLIGENT DECENTRALIZED VARIABLE STRUCTURE CONTROLLER FOR NONLINEAR NON-CANONICAL NON-AFFINE LARGE SCALE SYSTEMS
In this paper, an observer based fuzzy adaptive controller (FAC) is designed fora class of large scale systems with non-canonical non-affine nonlinear subsystems. It isassumed that functions of the subsystems and the interactions among subsystems areunknown. By constructing a new class of state observer for each follower, the proposedconsensus control method solves the problem of unmeasured sta...
متن کاملContinuum percolation for Gibbsian point processes with attractive interactions
We study the problem of continuum percolation in infinite volume Gibbs measures for particles with an attractive pair potential, with a focus on low temperatures (large β). The main results are bounds on percolation thresholds ρ±(β) in terms of the density rather than the chemical potential or activity. In addition, we prove a variational formula for a large deviations rate function for cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 123 4 شماره
صفحات -
تاریخ انتشار 2005